Recovery Responses of Phytoplankton and Zooplankton Assemblages to Decreasing Acidic Deposition in Adirondack Lakes

> William H. Shaw Don F. Charles Frank A. Acker James Sutherland Bahram Momen Charles Boylen Sandra Nierzwicki-Bauer

CLEAN AIR ACT AMENDMENTS (CAAA) 1990

 Significantly lowered SO4– emissions and marginally lowered NO3- emissions

 Created a prospect of Acid Rain Abatement and potential recovery of acidified Adirondack lakes

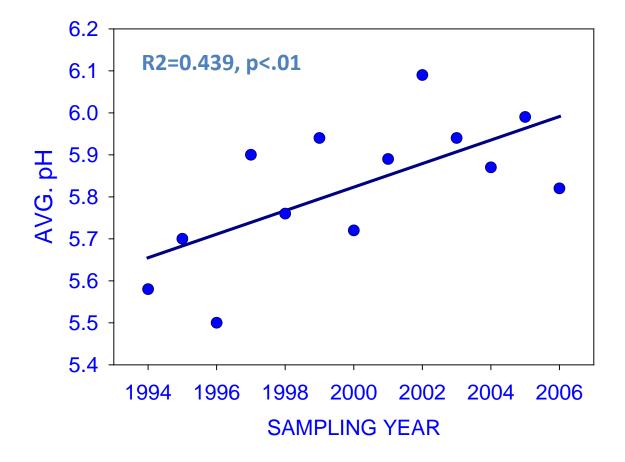
Is there evidence in Adirondack lakes for:

- Chemical Recovery Increasing lake pH
- Biological Recovery
 - Changes in phytoplankton and zooplankton with pH increases

Adirondack Effects Assessment Program (AEAP)

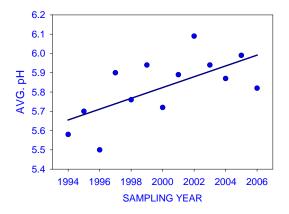
Study Sites

- 30 lakes and ponds
- Southwest Adirondacks
 - Highest acid deposition
 - Most acidic lakes


Possible Recovery Responses

- Increased number of taxa
- Change in proportion of species groups
- Change in taxon abundance
- Increases in community variables:
 - Species Richness
 - Species Diversity (Shannon Weaver Index)
 - Community Evenness (Species distribution)

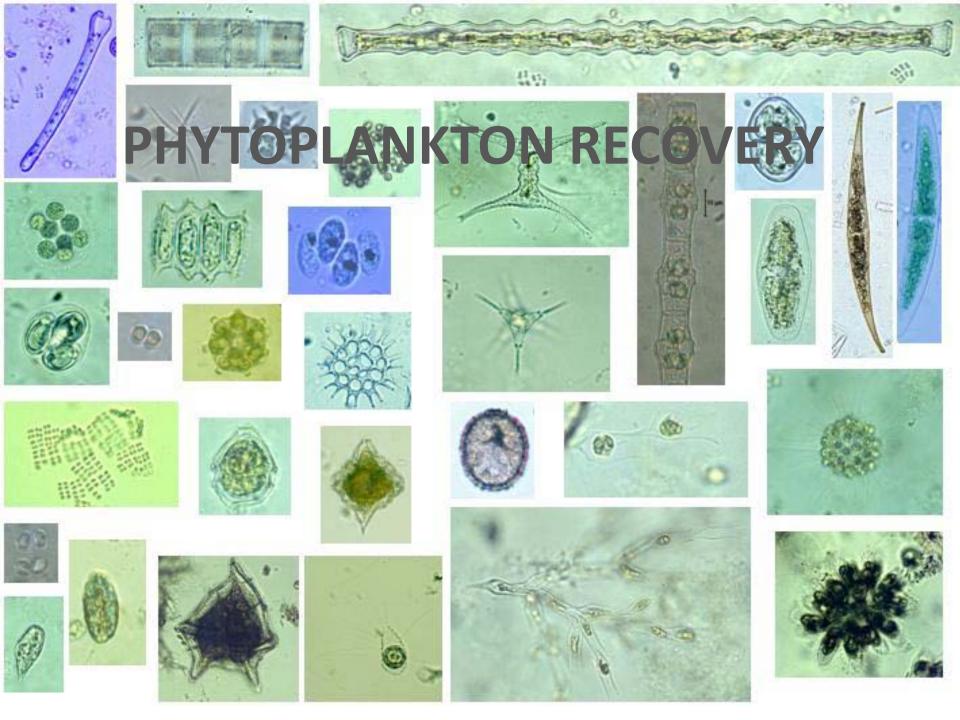
Plankton Samples


- Integrated sample (tube); surface to:
 - 1% light phytoplankton
 - 1 PPM dissolved O2 zooplankton
- Sampling:
 - 3 samples / yr. 1994-96 (June July Aug)
 - 2 samples / yr. 1997-2006 (July Aug)
- 30 lakes (pH 4.5-6.8)

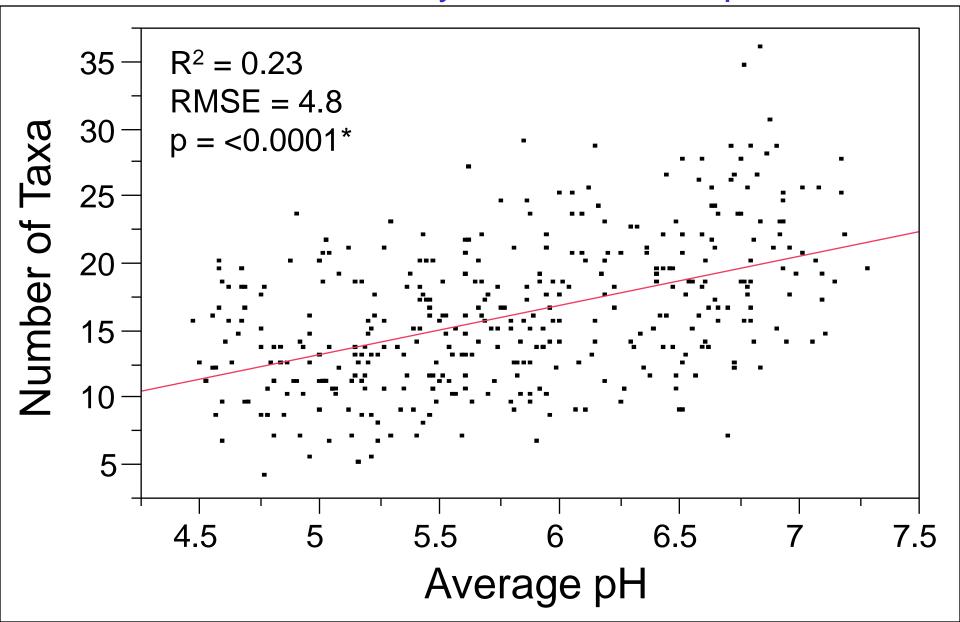
CHEMISTRY RESULTS: AEAP 30 LAKES AVG. pH : Time Regression

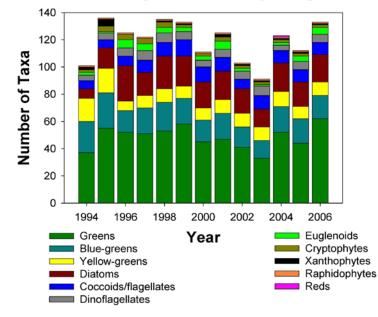
ph changes in individual acid Lakes

- Regression Analysis
 - pH vs. time per lake
 - 14 lakes showed significant increases (p=<.05)
- pH Difference between beginning & end
 - Avg. pH 1994-96 Avg. pH 2004-06
 - ∆ pH 0.3 ≈ Regr. Sig p<.05

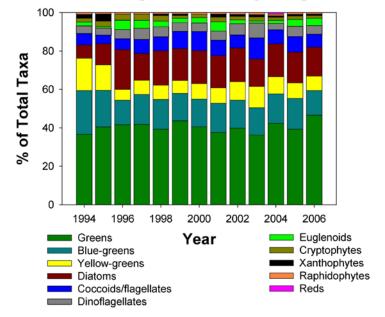


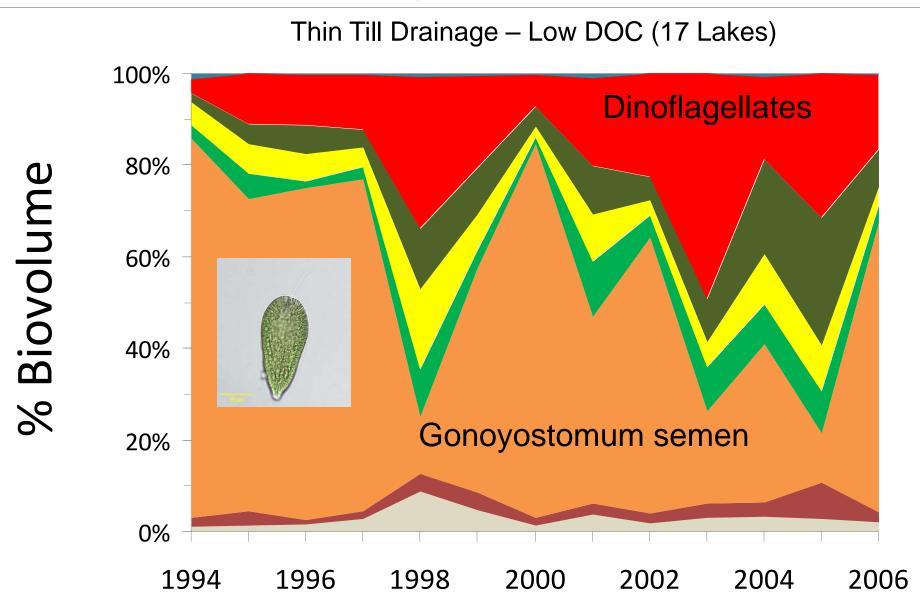
ph categories of Aeap lakes

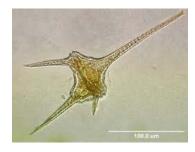


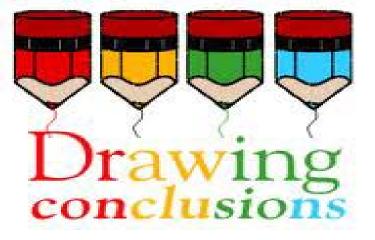

CHEMICAL RECOVERY ACCOUNTING pH CHANGE PER LAKE (13 YEARS)

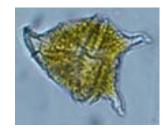
- CIRCUMNEUTRAL 4 (Initially > pH6.5)
- HIGH DOC 5 Unlikely to > pH5.6
- CO2 Eq. 4 → 5.6-5.9
- CRITICAL ZONE 2 \rightarrow 6.0-6.25
- FINAL RECOVERY $6 \rightarrow 6.5$
- REMAINED ACIDIC 9 <pH 5.6
- Evidence of Recovery in 12 /21 likely lakes


Number of Taxa / Sample vs. pH 30 lakes – 13 years – 750 samples

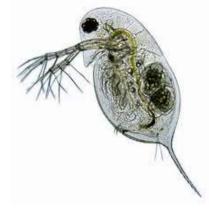

Number of Algal Taxa By Algal Class


Number of Algal Taxa By Algal Class




30 Study lakes – July and August

Biovolume of Algal Class vs. Year



- Increased number of taxa from 1994 to 2006 indicates limited biological recovery
- Proportions of taxa in algal classes and other groups change little
- Individual taxa increased with pH gain

ASSESSING ZOOPLANKTON RECOVERY

- Should expect increases in the following community variables:
 - Species Richness
 - Species Diversity (Shannon Weaver Index)
 - Community Evenness
- Community variables were assessed by regression analysis VS. pH for each lake

ASSESSMENT STRATEGY

- Crustaceans and Rotifers were assessed separately
- Lakes were divided into 2 groups
 - Marginally Impacted (Initial pH>5.7-6.4)
 - Critical Level (pH 6.0)
 - High-Moderate Impacted (Initial pH 4.5-5.6)
 - Includes extremely and moderately acidified lakes

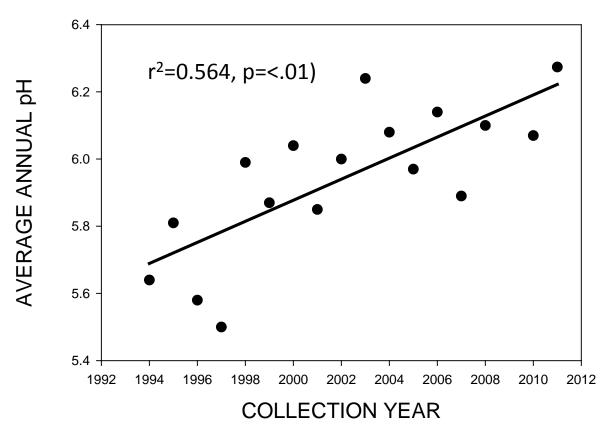
CRUSTACEAN COMMUNITY IMPROVEMENTS IN ACIDIC LAKES

LAKE	1994-96 рН	2004-06 рН	▲ pH	SR p / r²	SD p / r²	EV p / r²					
14 ACIDIC LAKES WITH SIGNIFICANT pH CHANGE											
Grass	5.94	6.50	0.56	0.07 / .27							
Limekiln	6.13	6.54	0.41	0.06 / .29	0.05 / .18						
Rondaxe	6.37	6.84	0.47	0.02 / .39							
Mbranch	6.41	6.72	0.31	0.02 /.45	0.07 / .28						
Round	4.71	5.41	0.70								
South	5.27	5.80	0.53		0.02 / 0.4	0.03 / .38					
Dart	5.50	6.05	0.55								
Carry	4.89	5.35	0.45	0.05 / .482							
Big moose	5.33	5.74	0.41								
M settlement	5.10	5.50	0.40								
Queer	5.55	5.91	0.36		0.02 / .41	0.03 / .35					
Brooktrout	5.17	5.53	0.35								
West	5.23	5.54	0.31								
Jockeybush	5.26	5.58	0.32		0.04 / .33	.07 / .27					
12 ACIDIC LA	KES WITH N	O SIGNIFIC	CANT pH (CHANGE							
Sagamore	6.10	6.57	0.47	0.04 / .33	0.03 / .38						
Wheeler	6.27	6.55	0.28								
Raquette	6.20	6.39	0.19								
Squaw	5.97	6.00	0.03								
'G'	5.68	5.97	0.28								
Constable	4.95	5.20	0.24								
Willy's	4.82	4.96	0.14								
Squash	4.49	4.61	0.12								
North	5.35	5.47	0.12								
Loon hollow	4.66	4.76	0.11		0.02 / .39						
Long	4.61	4.64	0.03								
Indian	5.19	5.02	-0.18								

ROTIFER COMMUNITY IMPROVEMENTS IN ACIDIC LAKES

LAKE	1994-96 рН	2004-06 рН	▲ рН	SR p / r²	SD p / r²	EV p / r ²				
14 ACIDIC LAKES WITH SIGNIFICANT pH CHANGE										
Grass	5.94	6.50	0.56							
Limekiln	6.13	6.54	0.41	0.0003 / .70						
Rondaxe	6.37	6.84	0.47		0.05 / .30					
Mbranch	6.41	6.72	0.31							
Round	4.71	5.41	0.70	0.0005 / .68	0.009 / .48					
South	5.27	5.80	0.53	0.0003 / .70	0.04 / .35					
Dart	5.50	6.05	0.55							
Carry	4.89	5.35	0.45							
Big moose	5.33	5.74	0.41	0.004 / .53	0.0003 / .71	0.002 / .69				
M settlement	5.10	5.50	0.40							
Queer	5.55	5.91	0.36	0.002 / .61	0.09 / .24					
Brooktrout	5.17	5.53	0.35		0.04 / .33					
West	5.23	5.54	0.31							
Jockeybush	5.26	5.58	0.32							
12 ACIDIC LAKES WITH NO SIGNIFICANT pH CHANGE										
Sagamore	6.10	6.57	0.47	0.001 / .60	0.09 / .24					
Wheeler	6.27	6.55	0.28							
Raquette	6.20	6.39	0.19							
Squaw	5.97	6.00	0.03							
'G'	5.68	5.97	0.28		0.035 / .35					
Constable	4.95	5.20	0.24							
Willy's	4.82	4.96	0.14							
Squash	4.49	4.61	0.12							
North	5.35	5.47	0.12		0.008 / .49	0.03 / .31				
Loon hollow	4.66	4.76	0.11							
Long	4.61	4.64	0.03							
Indian	5.19	5.02	-0.18							

RESULTS SUMMARY


- Biotic improvements were generally limited to lakes with significant pH improvement.
 - SR Crustaceans (6) & Rotifers (6)
 - SD & EV Crustaceans (10) & Rotifers (11)
- Improvements in crustaceans were essentially limited to marginally impacted lakes and were weak compared to rotifers.
- Improvements in rotifers occurred mostly in the acidic lakes and were stronger than that of crustaceans
- Recovery in the rotifer community probably precedes that of the crustacean community.

CONCLUSIONS

- Chemical recovery was limited
 - Only 1 initially acidic lakes exceeded pH 6.0 at end
 - 9 of 21 initially acidic lakes remained <pH 5.6
- Biotic recovery was incomplete
 - Phytoplankton show taxa increase over time, but community variables as yet unknown
 - initially acidic lakes (< pH 5.6) with pH improvement
 - species richness increases for rotifers in 3/10 lakes
 - and only 1/10 for crustaceans

NYSERDA EXTENSION

ANNUAL AVERAGE pH OF 16 LAKE SUBSET OF 30 AEAP LAKES

Acknowledgments

- Funding
 - US Environmental Protection Agency
 - Academy of Natural Sciences
- ANSP Patrick Center staff

 Amy Farrell, Andrew Tucillo, Dan Mellott
- Darrin Freshwater Institute Staff
- New York State Department of Environmental Conservation