THE 2011 NATIONAL ACID PRECIPITATION ASSESSMENT PROGRESS REPORT TO CONGRESS

Douglas Burns, Jason Lynch,
Jack Cosby, Mark Fenn, Jill Baron,
U.S. EPA Clean Air Markets Division

Status of Report

- □ Fifth NAPAP report(s) previous in 2005
- Through peer review and review by Air Quality
 Research Subcommittee of Committee for Environ.,
 Natural Resour. and Sustainability
- Currently with Office of Science and Technology
 Policy for final review
- Hopeful of late 2011 publishing date

Content

- Executive Summary and Introduction
- Chapter 1 Overview of Acid Rain Program, costs
 and benefits
- Chapter 2 Trends emissions and deposition, critical loads
- Chapter 3 State-of-science, ecosystem effects of acid deposition
- Chapter 4 Modeling future ecosystem effects,
 emissions/deposition scenarios

Acid Rain Program (ARP)

- EPA program that implements Title IV 1990 Clean
 Air Act Amendments
- \square SO₂ Cap-and-trade, 8.95 Mt cap by 2010
- NO_X Traditional emissions control, averaging
- □ Human health benefits -\$174 to \$427 billion/yr in 2010, primarily PM2.5 and secondarily O_3
- □ Costs − \$1 to \$3 billion/yr

Additional Benefits of ARP

- Ecological and visibility improvement benefits not well quantified
- Adirondack case study Banzhaf et al., 2006,
 ecological benefits of \$336 \$749 million/yr
- Recent EPA study visibility benefits \$40 billion/yr
- More research needed to better quantify complete set of benefits – ecosystem services

SO₂ Emissions

NO_x Emissions

Air Quality – Ambient SO₂

1989-91 2007-09

Air Quality – Ambient NO₃

1989-91

2007-09

Wet Deposition SO_4^{2-}

40%+ decline since early 1990s

Wet Deposition Inorganic N

20% to 25% decline since early 1990s except mid-west

Role of NH_3/NH_4^+

Ecosystem Recovery

- More complex and nuanced story
- Aquatic ecosystems
 - 1. SO_4^{2-} decreasing everywhere except SE
 - 2. NO_3^- decreases at many sites, but less than SO_4^{2-} and no decreases at some sites
 - 3. ANC increasing in NE, but not in SE
- Terrestrial ecosystems most studies show no recovery, continued declines in soil base saturation
- Little evidence to evaluate species recovery limited evidence that aquatic ecosystems beginning to recover

Trends in Lake and Stream Water Chemistry at LTM Sites, 1990-2008, Sulfate Ion Concentration (µeq/L/yr)

Source: EPA, 2010

Trends in Lake and Stream Water Chemistry at LTM Sites, 1990-2008, Nitrate Ion Concentration (µeq/L/yr)

Source: EPA, 2010

Trends in Lake and Stream Water Chemistry at LTM Sites, 1990-2008, ANC Levels (µeq/L/yr)

Source: EPA, 2010

Trend Magnitude by Region

Critical Loads

- First NAPAP report to extensively discuss CLs
- Case studies steady-state CLs
 - 1. ADK lakes 45% lakes in exceedance in 1989-91, 30% in exceedance in 2006-08
- Report emphasizes value of critical loads as policyinforming tool

Future Deposition Scenario Modeli to 2020 - MAGIC

Model Results - Year 2050

Ecosystem Recovery - Hysteresis

Acid Deposition & Climate Change

- Challenging to make quantitative predictions numerous interactions
- Temperature sensitive biogeochemical processes
- Water/moisture availability rapid oscillations
- Role of N deposition as regulator of C uptake
- Climate change another source of ecosystem stress
- Global change should be considered in future forecasts of S and N deposition effects

Take Home Messages

- Title IV of CAA a huge success goals have been exceeded
- Ecosystems not there yet
 - Aquatic chemistry recovering
 - Terrestrial no evidence of recovery, little data available
- A more in-depth discussion of recovery would be helpful – expectations, restoration needed?, climate change

Cross-State Air Pollution Rule

- Rule finalized by EPA July 6, 2011
- Implementation would begin Jan. 1, 2012 fully implemented by 2014
- \square Affects SO_2 and NO_x emissions in 27 states
- \square SO₂ emissions reduced by 73% (2005)
- \square NO_x emissions reduced by 54% (2005)
- Most similar to Scenario A from NAPAP report emissions reductions less, but faster

