
Real-time Subway
Information for Improving

Transit Ridership
Final Report

August 2016 Report Number 16-24

Cover Image Courtesy Albany Visualization and
Informatics Lab (AVAIL), University at Albany

Real-time Subway Information
for Improving Transit Ridership

Final Report

Prepared for

New York State Energy Research and Development Authority

Albany, NY

Joseph D. Tario, P.E.
Senior Project Manager

and

New York State Department of Transportation

Albany, NY

Robert Ancar,
Project Manager

Prepared by:

Albany Visualization and Informatics Lab (AVAIL)
Lewis Mumford Center, University at Albany, SUNY

Albany, NY

Catherine T. Lawson, Ph.D.
Chair, Geography and Planning Department

Director, Lewis Mumford Center

NYSERDA Report 16-24 NYSERDA Contract 46849 August 2016

ii

Notice
This report was prepared by the Albany Visualization and Informatics Lab, Lewis Mumford Center,

University at Albany, SUNY in the course of performing work contracted for and sponsored by the New

York State Energy Research and Development Authority and the New York State Department of

Transportation (hereafter the "Sponsors"). The opinions expressed in this report do not necessarily reflect

those of the Sponsors or the State of New York, and reference to any specific product, service, process, or

method does not constitute an implied or expressed recommendation or endorsement of it. Further, the

Sponsors, the State of New York, and the contractor make no warranties or representations, expressed or

implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or

the usefulness, completeness, or accuracy of any processes, methods, or other information contained,

described, disclosed, or referred to in this report. The Sponsors, the State of New York, and the contractor

make no representation that the use of any product, apparatus, process, method, or other information will

not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting

from, or occurring in connection with, the use of information contained, described, disclosed, or referred

to in this report.

NYSERDA makes every effort to provide accurate information about copyright owners and related

matters in the reports we publish. Contractors are responsible for determining and satisfying copyright or

other use restrictions regarding the content of the reports that they write, in compliance with NYSERDA’s

policies and federal law. If you are the copyright owner and believe a NYSERDA report has not properly

attributed your work to you or has used it without permission, please email print@nyserda.ny.gov

Information contained in this document, such as web page addresses, are current at the time of

publication.

iii

Abstract
In recent years, the standardization of transit schedule information has yielded a dramatic increase in

the accessibility of computerized transit schedules and given rise to real-time service schedules. Two

such real-time service schedules are the General Transit Feed Specification Real-time (GTFS-R) and the

Service Interface for Real-time Information (SIRI). Due to system/vendor limitations, the Metropolitan

Transportation Authority (MTA) uses GTFS-R for its real-time subway schedule and SIRI for its real-

time bus schedule. In order to promote development of applications using real-time scheduling data,

MTA needed a single real-time scheduling format. The purpose of this project is to create an Application

Programming Interface (API) that is capable of converting GTFS-R into SIRI. The GTFS-R to SIRI

real-time data feed will unify their data streams to provide developers and travelers with more complete

access to real-time transit data in the largest mass transit market in the country. Furthermore, in keeping

with the spirit of Open Data, Open Source, AVAIL developed a configurable server for use with the

converter. By uploading a General Transit Feed Specification (GTFS) zip file or providing a URL

pointing to a GTFS feed source, and specifying a URL for the GTFS-R feed, this server can be easily

used to convert GTFS-R data to SIRI by any transit agency or researcher throughout the world.

Acknowledgements
Thanks to MTA staff, NYSERDA, and NYS Department of Transportation (DOT); AVAIL staff

members Eric Krans and Alex Muro; and graduate students Paul Tomchik, Joel Tirado and Laura

Travison.

iv

Table of Contents
Notice .. ii

Abstract ..iii

Acknowledgements ...iii

List of Figures .. v

List of Tables ..vi

Acronyms and Abbreviations ...vi

Executive Summary .. ES-1

1 Introduction ... 1

1.1 Background ... 1
1.1.1 Automatic Vehicle Location (AVL) ... 2
1.1.2 Open Data ... 3
1.1.3 API ... 4
1.1.4 Open Source Code.. 4
1.1.5 The General Transit Feed Specification (GTFS) .. 4
1.1.6 GTFS-R ... 4
1.1.7 SIRI ... 5

2 Project Budget .. 6

2.1 Analysis of actual cost incurred in relation to the budget .. 6
2.1.1 Project Budget - NYSERDA .. 6
2.1.2 MTA Match .. 6

3 Research Method .. 7

3.1 Data Analysis .. 7
3.1.1 General Transit Feed Specification (GTFS) .. 7
3.1.2 General Transit Feed Specification Real-Time (GTFS-R) .. 8
3.1.3 Service Interface for Real-Time Information (SIRI) ... 9

3.2 Methods ... 11
3.3 Project Timeline... 13

4 Findings ..14

4.1 Caching ... 15
4.2 Event-based Logging .. 15
4.3 System Architecture .. 16
4.4 Performance .. 17
4.5 Future Research ... 19

v

5 Statement on Implementation ...21

5.1 Technical Aspects of Implementation ... 21
5.1.1 Admin Configuration Console ... 21

5.2 API Calls .. 22
5.2.1 Monitoring Calls ... 22

5.2.1.1 SIRI Stop Monitoring Call .. 23
5.3 SIRI StopMonitoring Requests .. 23

5.3.1 SIRI StopMonitoring Responses ... 24
5.3.2 The SIRI Vehicle Monitoring call ... 25

5.4 SIRI VehicleMonitoring Requests ... 25
5.4.1 SIRI VehicleMonitoring Responses... 26

5.5 Links to the GTFS-R to SIRI API... 27
5.6 Marketing Strategies Recommended .. 27

6 Conclusion ...28

7 Bibliography ...29

Appendix A .. A-1

List of Figures
Figure 1. Metadata Visualization for NYC Subway GTFS-R ... 8
Figure 2. Metadata Visualization for Vehicle SIRI Data. ... 9
Figure 3. Metadata Visualization for Bus Stop SIRI Data ..10
Figure 4. Output Data 1 ...18
Figure 5. Output Data 2 ...18
Figure 6. Map Visualization of Real-time Subway Train Positions ...19
Figure 7. GTFS-R to SIRI Conversion API Control Console. Uploading Static

 GTFS Data by URL ...21
Figure 8. GTFS-R to SIRI Conversion API Control Console. API Key and Retry Settings22
Figure 9. GTFS-R to SIRI Conversion API Control Console. Logging Settings.22

vi

List of Tables
Table 1. Project Budget .. 6
Table 2. MTA Match ... 6
Table 3. GTFS Features. ... 7
Table 4. Project Gantt Chart ..13

Acronyms and Abbreviations
AFC Automatic Fare-box Collection
APC Automatic Passenger Counters
API Application Programming Interface
ASCII American Standard Code for Information Interchange
AVL Automatic Vehicle Location
CAD Computer Aided Dispatch
GIS Geographic Information Systems
GTFS General Transit Feed Specification
GTFS-R General Transit Feed Specification Real-time
MTA Metropolitan Transportation Authority
DOT New York State Department of Transportation
NYSERDA New York State Energy Research Development Authority
SIRI Service Interface for Real-Time Information
SM Stop Monitoring
Tri-MET Tri-County Metropolitan Transportation District of Oregon
URL Uniform Resource Locator (Web-address)
XML Extensible Markup Language

ES-1

Executive Summary
In recent years, the standardization of transit schedule information has yielded a dramatic increase in

the accessibility of computerized transit schedules, and has brought about the availability of real-time

service schedule. Currently, as a result of system/vendor limitations, the MTA publishes its real-time

transit data in two different formats. The purpose of this project is to create an API that is capable of

converting MTA’s Subway system data, GTFS-R, on the fly into the format used to publish their bus

data, known as SIRI. The GTFS-R to SIRI real-time will unify their data streams to provide developers

and travelers more complete access to real-time transit data in New York City, which has the largest

mass transit market in the country.

The General Transit Feed Specification (GTFS) is a common format for public transportation

schedules and associated geographic information. GTFS is an open data spatial format that contains

transit scheduling information that accommodates Automatic Vehicle Location (AVL) data-feeds.

GTFS-R is a feed specification that extends GTFS by integrating AVL data allowing public transportation

agencies to provide real-time updates about their fleet to application developers. SIRI is an Extensible

Markup Language (XML) protocol that provides a similar service to GTFS-R, allowing distributed

computers to exchange real-time information about public transport services and vehicles.

AVAIL mapped GTFS-R fields to SIRI fields. To provide geographic coordinates in the SIRI feed,

AVAIL developed algorithms that use GTFS scheduling and spatial data as a “spatial backbone,” along

with the information available in the streaming GTFS-R feed, to smoothly plot the progress of a vehicle

along its route.

The performance demands of a real-time system required the building of numerous auxiliary data

structures atop the GTFS and GTFS-R feed data that provide instant retrieval of any required piece

of information to perform the GTFS-R to SIRI conversion.

For ease of deployment, a configurable server was created around the converter. By uploading a GTFS

zip file or providing a URL pointing to a GTFS feed source, and specifying a URL for the GTFS-R feed,

this server can be easily setup to convert GTFS-R data to SIRI by the MTA or other transit agencies.

After completion of the GTFS-R to SIRI conversion tool, AVAIL tested the server over the course

of two months. The tool converts the GTFS-R data directly to SIRI with 100 percent fidelity. The SIRI

ES-2

translation feed contains an associated field that holds all data from the MTA GTFS-R. The translation

tool also offers information beyond what is contained in the MTA GTFS-R feed including the addition

of longitude and latitude during the conversion process. To test the accuracy of the conversion tool in

developing longitude and latitude of trains in the subway system, AVAIL integrated a data analysis

feature that logs information on trips in each GTFS-R to SIRI message. This logging feature can be

used by MTA to assess the quality of their GTFS-R data.

1

1 Introduction
In order to catalyze ongoing development of applications that utilize real-time transit data, data

scientists at AVAIL contracted with the MTA, and funded by the DOT and NYSERDA, to create a

GTFS-R to SIRI conversion API. SIRI is a more developer friendly real-time specification than

GTFS-R. By making this data available to developers, MTA hopes to increase the use of real-time

subway data in existing and emerging applications as well as transit research and visualization projects.

The API was developed between July and October, 2015 and was made available to the MTA’s developer

community for beta testing (October–November, 2015). During this time, AVAIL subjected the API

to an extended period of performance reporting. As of the date of this report, the fully operational API

has been deployed by MTA.

1.1 Background

The transit industry, traditionally a data-intensive environment, is moving swiftly to a data

environment enhanced with opportunities for machine-generated and machine-readable data.

Technology advancements in on-board equipment (e.g., Automatic Vehicle Location [AVL],

Automatic Passenger Counters [APC], Automatic Farebox Collection [AFC]). More recently,

innovative mobile apps and social media (Open Trip Planner, Facebook, etc.) are gaining attention

from the public. Yet, only a few transit agencies have fully exploited this emerging “pervasive data”

computing environment. Additional technological advancements in computing are accelerating the

opportunities to use machine-readable data including: cloud-based storage; cloud hosting of spatial

and temporal tools suites for transit modeling software; visualizations and data analytics for marketing

and related analyses; and the use of Open Source and Open Data strategies developed by data scientists,

particularly APIs, could rapidly transform the work environment for transit agency staff, as well as

customer-focused communications, for the transit industry.

Transit agencies have a long history of collecting data (through manually administered on-board surveys,

manual ridership counts, financial administrative records, etc. With the introduction of computers into

the work environment, these data collection efforts included converting these manually collected data

to “machine-readable” formats, making it possible to digitally store and retrieve records efficiently.

However, it was still very time-consuming to manually enter these data. The concept of automatically

“harvesting” machine-readable data from operations sparked the possibility of new methods for collecting

important data elements from transit operations to be used for analysis for operations and planning.

2

1.1.1 Automatic Vehicle Location (AVL)

One of the major technologies at the information level is Automatic Vehicle Location (AVL) systems.

In his 1995 Synthesis of Transit Practice, Howard Benn defined AVL as “A smart technology that

monitors the real-time location of transit vehicles (generally non-rail modes) through the use of one

or more of the following: global positioning systems (GPS), Loran-C, or signpost transmitters in

combination with vehicle odometers. Most installations include integration of the AVL system with

a geographic information systems (GIS) or computer mapping system. The monitoring station is

normally located in the dispatch /radio communications center” (Benn 1995:51). AVL data contain

polling records (bus location reported when queried by a central computerized system, a round-robin

polling of “time-at-location”), stop records (time-at-location of a stop), and time point records

(time-at-location at time points on route). AVL systems records are “harvested” by on-board

computers that upload the records nightly, using automated high-speed links, or using real-time

radio transmission, with the records being stored after they are received (Furth et al,. 2006).

According to Okunieff (1997), AVL technologies were first deployed in 1969, in Chicago, IL. By

the late 1990s, the U.S. DOT was promoting integrating transportation infrastructure (ITI), to enable

transit agencies to develop strategies for sharing AVL information. AVL data provided real-time

status on information on bus arrival/department times to assist intermodal connectivity. At the time,

the dissemination strategies for AVL included online, audio-dial, video monitor, variable message

sign, kiosk, and speakerphone.

Even into the late 90s, no system integrated real-time travel times with computer-aided dispatch

(CAD) software to predict actual bus travel times, even though the AVL data provided congestion

level information to transit software control systems. Okunieff (1997) describes the data as being

virtually “trapped” in its own architecture. However, for freeway operations, AVL data could provide

travel times as probes. Okunieff found the TRAVLINK (MCTO) program conducted a test of bus probes

using wayside AVL devices. Benn (1995) pointed out that AVL systems were becoming more prevalent

and would bring real-time information down to the bus stop level and as a result, bus route evaluation

would be used when initially installing new systems. There was interest in how customers might be

responding to having real-time information with respect to the toleration of wait times. AVL systems

are able to provide the data to answer the question, “Where is the bus?”

3

1.1.2 Open Data

The general purpose of Open Data is to make data available to the public, but more specifically

assembling data elements to generate a standardized data product that is available to the public for free.

According to Schweiger (2015), the trajectory of Open Data within the transit industry began when the

Bay Area Rapid Transit released data to the public in the form of comma-separated values (.csv) files in

1998. The most widely recognized Open Data accomplishment is the project scoped by the Tri-County

Metropolitan Transportation District of Oregon (Tri-Met), in partnership with Google, culminated in the

creation of General Transit Feed Specification (GTFS), in 2005. The unique contribution of this project

was the generation of static schedule information (e.g., stop location, route geometrics, and stop times)

in a standard format.

Schweiger points out that using an Open Data policy provides benefits to public transit authorities in

terms of transparency. Transit customers gain tremendous benefits when the Open Data is accessed with

free applications, either as real-time or static data. The author further found private firms used the open

transit data to develop innovative applications in ways not currently available within transit agencies

themselves. In addition, providing Open Data to the academic community greatly increased the use of

the data and facilitated the creation of analyses and data-driven discoveries. Open Data can be used in

the production of decision-support tools including: data visualizations; service planning and evaluations;

route layout and design; performance analysis; and travel time and capacity analysis.

Transit agencies appreciated the increased awareness of their services, empowerment of their customers,

innovation outside their agency, improved perceptions of their activities, and contributions to the private

sector in the form of new business development. Additionally, they benefited from the feedback they

received when their data was used by both developers and customers.

The underlying technologies used in the creation of Open Data, such as GTFS, include: scheduling

software, GIS, CAD systems, AVL data, and real-time arrival prediction software. By creating an

Open Data approach, many of the previous issues facing individual agencies attempting to build their

own version of an integrating procedure were solved by following the standard formatting conventions.

Providing customers with improved information on available transit services, in easy to access formats

may result in an increase transit ridership as well.

4

1.1.3 API

Perhaps the most powerful advantage data science brings to transportation is the use of APIs. These tools

provide accessibility to data just as plumbing provides accessibility to water. One can imagine data is

like water, flowing through pipes with a series of faucets. APIs in this case, are like faucets allowing data

scientists to easily and repeatedly access complex data. The advent of API technology made it possible to

deploy information to consumers and transit agencies in real-time. Data scientists can utilize APIs to build

data analytics dashboards for transit planners to visualize and analyze integrated, complex data. The only

requirement for the using APIs is that the data be machine-readable, which requires the data to be

assembled with standardized data elements.

1.1.4 Open Source Code

In production and development, open source as a development model promotes universal access via

a free license to a product's design or blueprint, and universal redistribution of that design or blueprint,

including subsequent improvements to it by anyone. The transportation industry is becoming increasingly

aware of the potential pitfalls of proprietary software: cost, dependency on a single business entity, and

the slow pace of innovation. An industry-wide commitment to Open Source software would allow

advancements to Open Source projects to be deployable anywhere.

1.1.5 The General Transit Feed Specification (GTFS)

The General Transit Feed Specification defines a common format for public transportation schedules

and associated geographic information. GTFS “feeds” allow public transit agencies to publish their

transit data and developers to write applications that consume the data in an interoperable way. GTFS

feeds provide the information needed for users of a transit system to plan their trips. They consist of six

to 13 CSV files, updated irregularly, on an as-needed basis. Much of the data contained in the MTA’s

GTFS feeds was pertinent to this project. The GTFS-R to SIRI conversion requires information about

scheduled routes, expected stop times, and the geographic representations of the paths that vehicles

follow while serving their routes.

1.1.6 GTFS-R

GTFS-R is “a feed specification that allows public transportation agencies to provide real-time updates

about their fleet to application developers. It is an extension to GTFS, an Open Data format for public

transportation schedules and associated geographic information” (What is GTFS-real-time? 2015).

5

GTFS-R feeds provide information about the actual state of the transit system at given moment as

opposed to the scheduled behavior of the system. Messages may contain information about trip delays

or cancellations, service alerts, and vehicle positions. These feeds are designed to be used in conjunction

with the GTFS data. For example, in the MTA real-time feeds, only trip and route keys are provided. To

present meaningful information to riders, application developers must reference the GTFS data. The MTA

Subway GTFS-R feed updates every 30 seconds and provides estimated times of arrival for the trains in

the system. The Long Island Rail Road feed updates less regularly and contains the delay in seconds from

the scheduled arrival time rather than ETAs. (Neither provide vehicle positions. This information is

inferred by the conversion system as discussed in section 4.2.

1.1.7 SIRI

SIRI is “an XML protocol to allow distributed computers to exchange real-time information about

public transport services and vehicles” (SIRI Home Page, 2011). SIRI is used in a variety of different

ways, such as:

• Provide real-time departure from stop information for display on stops, internet and
mobile delivery systems;

• Provide real-time progress information about individual vehicles;
• Manage the movement of buses roaming between areas covered by different servers;
• Manage the synchronization of guaranteed connections between fetcher and feeder services;
• Exchange planned and real-time timetable updates;
• Distribute status messages about the operation of the services; and
• Provide performance information to operational history and other management systems

(SIRI Home Page, 2011).

The protocol is a standard based on the transmodel abstract model for public transport information.

6

2 Project Budget

2.1 Analysis of actual cost incurred in relation to the budget

Costs incurred on this project conformed directly to the budget.

2.1.1 Project Budget - NYSERDA

Table 1. Project Budget

Project Budget - NYSERDA
 Budgeted Total Project

Costs
% of

Budget
Remaining

Costs
% of

Budgeted
Available

Direct Labor $9,282.00 $9,526.65 103% $(244.65) -3%

Labor Overhead $1,392.00 $1,429.02 103% $ (37.02) -3%

Other Direct Costs $51,826.00 51,543.07 99% $282.93 1%

Facilities and Administration $12,500.00 $12,499.75 100% $0.25 0%

Total $75,000.00 $74,998.49 100% $1.51 0%

2.1.2 MTA Match

Table 2. MTA Match

MTA Match
 Budgeted Actual Remaining
Financial $19,500.00 $19,499.26 $0.74

In-kind $5,500.00 $5,500.00 $ -

Total $25,000.00 $24,999.26 $ 0.74

7

3 Research Method

3.1 Data Analysis

3.1.1 General Transit Feed Specification (GTFS)

As previously described, GTFS is “a common format for public transportation schedules and associated

geographic information” (What is GTFS?, 2015). A GTFS feed is a series of text files that models

different aspects of transit—routes, stops, trips, etc. and is used in a diverse range of applications

relating to public transportation. This data was invaluable in building the GTFS-R to SIRI conversion

tool. As noted below, GTFS contains geospatial information required in the SIRI format but lacking in

GTFS-R. Figure 1 displays required .txt files used in GTFS as well as some optional and required fields

for the “stops.txt” file.

Table 3. GTFS Features.

Filename/Field
Name

Required Defines/Details

Agency.txt Required One or more transit agencies that provide the data in this feed.
Stops.txt Required Individual locations where vehicles pick up or drop off passengers.
Routes.txt Required Transit routes. A route is a group of trips that are displayed to riders as a single

service.
Trips.txt Required Trips for each route. A trip is a sequence of two or more stops that occurs at

specific time.
Stop_times.txt Required Times that a vehicle arrives at and departs from individual stops for each trip.
Calendar.txt Required Dates for service IDs using a weekly schedule. Specify when service starts and

ends, as well as days of the week where service is available.
Stop_id Required The stop_id field contains an ID that uniquely identifies a stop or station.

Multiple routes amy use the same stop. The stop_id is dataset unique.
Stop_code Optional The stop_code field contains short text or a number that uniquely identifies the

stop for passengers. Stop codes are often used in phone-based transit
information systems or printed on stop signage to make it easier for riders to
get a stop schedule or real-time arrival information for a particular stop.

The stop_code field should only be used for stop codes that are displayed to
passengers. For internal codes, use stop_id. This field should be left blank for
stops without a code.

Stop_name Required The stop_name field contains the name of a stop or station. Please use a name
that people will understand in the local and tourist vernacular.

Stop_desc Optional The stop_desc field contains a description of a stop. Please provide useful,
quality information. Do not simply duplicate the name of the stop.

Stop_lat Required The stop_lat field contains the latitude of a stop or station. The field value must
be a valid WGS 84 latitude.

Stop_lon Required The stop_lon field contains the longitude of a stop or station. The field value
must be a valid WGS 84 longitude value from -180 to 180.

8

3.1.2 General Transit Feed Specification Real-Time (GTFS-R)

Figure 1 is a metadata visualization of GTFS-R created by the AVAIL research team to facilitate mapping of GTFS-R to SIRI.

Figure 1. Metadata Visualization for NYC Subway GTFS-R

9

3.1.3 Service Interface for Real-Time Information (SIRI)

The MTA uses SIRI to provide geospatial and temporal information on buses in its public transit network. Figures 2 and 3 are metadata

visualizations of SIRI Bus Vehicles and Bus Stops, respectively.

Figure 2. Metadata Visualization for Vehicle SIRI Data.

10

Figure 3. Metadata Visualization for Bus Stop SIRI Data

11

3.2 Methods

While all GTFS data needed to complete the conversion is available in tabular format that could be

either loaded into a database or scanned programmatically, the resulting API server provides real-time

information about the subway system in one of the world’s largest cities. There can be hundreds of trains

in the system in a given moment. The server must handle concurrent queries from app developers about

these trains. Responses to these queries can be over a megabyte in size. These requirements place very

steep demands on the server for high throughput with low latency, ruling out simple solutions to the

straight-forward, one-to-one information mappings.

AVAIL identified a number of functional and nonfunctional system requirements. As such, AVAIL

designed the server to handle schedule data and configuration updates seamlessly. The server is designed

to be continuously available, as requiring restarts after updates would not be acceptable. Furthermore, the

server is designed to make configuration and maintenance as easy as possible. This required creating a

simple yet complete administrative console that is available even if the server is either not configured or

misconfigured. The console provides feedback to guide administrators during the configuration process.

The server is capable of being re-configured on the fly, and can handle GTFS data updates while

continuing to service user requests.

AVAIL designed the server towards supporting any transit agency that adheres to the GTFS and GTFS-R

standards, as well as be configurable in order to support agencies with GTFS-R feeds similar to the NYC

MTA’s Subway or the Long Island Rail Road feeds. These features required AVAIL to design the server

to be universal, MTA agency specific information is hard-coded into the application but is only activated

when MTA’s agency_id is specified in the GTFS agency.txt file. The code base is also organized into

modules to allow for clean extensibility and to support dissimilar feeds.

After visualizing both data structures, AVAIL mapped GTFS-R fields to SIRI fields. The vast majority

of fields in GTFS-R and SIRI could be directly mapped, requiring only a formatting conversion. Since

GTFS-R is encoded in protocol buffers, a binary data format, we used an existing open source library,

protobuf.js, to decode the GTFS-R feed data for mapping to SIRI, an ASCII.

The functional requirements of the project were rather simple: convert the GTFS-R Subway feed into the

SIRI format of the Bus Time system. Many elements in the conversion are straight-forward, one-to-one

mappings that simply require looking up data in the GTFS feed. One key piece of information missing in

the Subway’s GTFS-R feed that is present in the Bus Time system’s SIRI feed is vehicle location.

12

AVAIL developed a conversion tool that successfully translates every data field of the GTFS-R feed.

The conversion tool also produces additional information based on the GTFS-R feed. For instance, SIRI

includes latitude and longitude fields that are optional in GTFS-R data feeds. The MTA GTFS-R feeds,

in particular, exclude these fields. Vehicle location is clearly very important for user facing apps, and

luckily location is easy to infer from previous stop, next stop, elapsed travel time, and estimated time

of arrival. The logic used to infer train locations is rather simple. When a train is at a stop, its location

is clear. Otherwise, trains are moved along the route path specified in the GTFS schedule data using

following simple formulas:

Equation 1. 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓_𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄 = 𝑻𝑻𝒄𝒄𝒄𝒄𝒓𝒓− 𝑻𝑻𝒑𝒑𝒓𝒓𝒄𝒄𝒄𝒄
𝑻𝑻𝒄𝒄𝒓𝒓𝒓𝒓− 𝑻𝑻𝒑𝒑𝒓𝒓𝒄𝒄𝒄𝒄

Where 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 is the ratio covered out of what distance remained between the train and its next

stop at the time of the previous GTFS-R message 𝑇𝑇𝑝𝑝𝑟𝑟𝑐𝑐𝑐𝑐. 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟 is the timestamp of the current message

and 𝑇𝑇𝑐𝑐𝑟𝑟𝑟𝑟 is the estimated arrival time per the current message. If we let 𝐷𝐷𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎_𝑝𝑝𝑟𝑟𝑐𝑐𝑐𝑐 be the distance

traveled from the previous stop at 𝑇𝑇𝑐𝑐𝑟𝑟𝑟𝑟, and 𝐷𝐷𝑝𝑝𝑟𝑟𝑐𝑐𝑐𝑐_𝑟𝑟𝑐𝑐𝑟𝑟 be the distance that remained between a train

and its next stop at 𝑇𝑇𝑐𝑐𝑟𝑟𝑟𝑟, the formula for the current distance along the path, 𝐷𝐷𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑟𝑟 becomes

Equation 2. 𝑫𝑫𝒓𝒓𝒂𝒂𝒓𝒓𝒂𝒂𝒂𝒂_𝒄𝒄𝒄𝒄𝒓𝒓 = 𝑫𝑫𝒓𝒓𝒂𝒂𝒓𝒓𝒂𝒂𝒂𝒂_𝒑𝒑𝒓𝒓𝒄𝒄𝒄𝒄 + (𝑫𝑫𝒑𝒑𝒓𝒓𝒄𝒄𝒄𝒄_𝒓𝒓𝒄𝒄𝒓𝒓 ∗ 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓_𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄)

The resulting location information is added to the GTFS-R feed during the conversion process. This

mapping of trains is dependent upon completeness of the GTFS data. If spatial data and/or schedule

data does not exist for a trip, we do not speculate concerning the future path of the train. The translation

API includes a logging feature to collect data completeness information for MTA as a tool for assessing

the quality of their GTFS-R data.

In most instances, locations of stops do not fall directly onto the lines defined in the GTFS paths.txt file.

Stops must therefore be projected onto the path lines before computing the position of a vehicle. A least

squares regression was used to make this projection under strict constraints that preserve the smoothness

of a vehicle's journey. The projected point stands in for the stop when the system infers a vehicle’s

location. This path-fitting algorithm has the added benefit of finding GTFS data anomalies, which it logs

when they exceed a threshold. Inspection of these logs will indicate where the GTFS data deserves data

quality improvements.

13

The performance demands of this real-time system required the construction of numerous auxiliary data

structures atop the GTFS and GTFS-R feed data. These provide instant retrieval of any required piece of

information, there is no scanning for data. Furthermore, all information required to perform the GTFS-R

to SIRI conversion is held entirely in fast access memory.

To understand the importance of this fast information retrieval, consider that inferring a MTA subway

train's geographic position requires inspecting multiple entries in the GTFS-R feed, jumping to the

relevant information from the GTFS stops.txt and shapes.txt files, then updating previously inferred data

about the train. This must be done for the hundreds of vehicles in the transit system at any given moment,

all while serving large amounts of data to the system users.

For ease of deployment, AVAIL wrapped a configurable server around the converter. By uploading a

GTFS zip file or providing a URL pointing to a GTFS feed source, and specifying a URL for the GTFS-R

feed, this server can be easily setup to convert GTFS-R data to SIRI by the MTA or other transit agencies.

3.3 Project Timeline

Included below, including percentage completed and projected percentage of completion by month

Table 4. Project Gantt Chart

 Project Timeline (July 1, 2015 - August 31, 2016)

Task Jul
y

Au
g

Sep
t

Oc
t

No
v

De
c

Ja
n

Fe
b

Ma
r

Ap
r

Ma
y

Ju
n

Ju
l

Au
g

1: Project
Managemen

t

2: GTFS-
Real Time
to Siri API

3:
Processing

Protocol
Buffers

4: GTFS-R
To Siri Beta
Availability

14

4 Findings
The first major problem encountered while developing the conversion server was projecting the stops in

the GTFS data onto the route shapes. While tracking trains along their route, stops are used as points of

location certainty. Since stop coordinates do not necessarily fall on the shape of the routes that visit them,

AVAIL needed to project stops onto the routes. In most cases, the stop is only a couple of feet from the

shape, making the projection is simple. In some extreme cases, the stop coordinates are quite a distance

away from the route. Stop to route path projections are made using a least square regression with the strict

constraint that a train never backtracks.

AVAIL needed to develop a dynamic programming algorithm that performs the projections. It runs in

O(SW2) time, where S is the number of stops along the route and W is the number of points in the

route’s geographic shape representation. This work is done in a separate process so as not to slow down

the server. As the algorithm runs, any stop whose distance from the route serving it exceeds a threshold

 is logged to an output file to aid in anomaly correction. These logs have already led to the correction of

couple of problematic routes.

The GTFS data is in tabular format and could easily be uploaded to database tables and queried using

SQL. However, each of the trains in the system require dozens of queries to create the SIRI response.

This would unavoidably result in thousands of disk seeks, regardless of what indices are built. The

GTFS-R message also presents challenges. It arrives as an array of nested objects, containing arrays

themselves. Without indices, nested scans would be required to find the information necessary to make

the GTFS-R to SIRI conversion.

To provide the performance required for this server, all relevant GTFS and GTFS-R information is

kept in memory. Indices are built atop this information to make it queryable by trip key, route key,

and/or stop key. The expected O(1) search time for all pieces of information sometimes required

building lookup tables whose values are also lookup tables. To avoid redundancy, some indices are

interconnected. Wrappers around the indices provide interfaces that abstract away the sometimes

complicated implementation details and instead present an interface to developers with meaningful

method names. The code that builds these indices was developed as separate projects, each with its

own GitHub repository, so that developers could use these tools for other transit Projects.

15

4.1 Caching

Building the object representing the API query response and serializing it for transport to clients proved

to be a critical bottleneck. When this was done for each response, the server could handle only a handful

of concurrent users. To overcome this limitation, a custom caching layer was implemented.

For each GTFS-R message received, a SIRI response containing all the information for each train in

the system is built. Then it is broken down into the largest possible chunks, which are serialized in

both JSON and XML format and stored as raw binary data in contiguous memory blocks (buffers).

Indices are built over these that enable expected O(1) lookup of any information chunk. Ad hoc JSON

or XML responses can then be generated by first using the indices themselves to determine what

information belongs in a response, then using the indices to retrieve the relevant information from the

buffers and sewing it together to create valid JSON or XML syntax. These responses are “memoized,”

and simply timestamped if a matching query arrives before the information expires.

4.2 Event-based Logging

The GTFS-R to SIRI conversion system was built as a hierarchy of highly decoupled component

modules. These components interact through interface APIs. This created a bit of a problem when

it came to logging. Configuration needed to be centralized in the component atop the component

hierarchy, but AVAIL did not want to complicate the inter-component interfaces by passing around

loggers.

Instead, each component contains an event-emitter on which other components can register listeners.

This allows decoupling of system components while allowing components to observe the state of other

components. This event-based inter-component messaging system is currently used for logging statistics

about the completeness of, and anomalies discovered within, the GTFS and GTFS-R data feeds, as well

as the train tracking errors arising from these anomalies. The SIRI server–the component atop the system

hierarchy–listens for events and writes them to log files. This setup allows administrators to control

logging through the administrative console.

These logs are in machine readable format to allow automated analysis of the GTFS and GTFS-R data

sources and the system’s behavior. These logs reveal what types of errors are degrading the information

presented to transit system users. Because of the low coupling between components, this system is easily

extensible and other loggers can be added if deemed necessary.

16

4.3 System Architecture

The GTFS-R to SIRI conversion system was built to serve a high volume of requests with low latency

and high throughput. Dozens of data structures are built atop the GTFS, GTFS-R, and generated SIRI

data to provide the fastest possible service to the system’s users. For each system component, these

data structures are stored entirely in memory and are centralized into a single object that we call the

component’s Data Store. The Data Stores encapsulate the state of the system and provide immediate

access to all the information used to perform the GTFS-R to SIRI conversion.

Care was taken while designing the system’s components to adhere, as much as possible, to the functional

programming paradigm. This paradigm requires that the output value of a function depends only on the

arguments that are input to the function, so calling a function f twice with the same value for an argument

x will produce the same result f(x) each time.

The GTFS and GTFS-R input feeds are treated as input streams, and the output of the respective system

components depends only on the latest data received from these input streams. In fact, with exception of

the SIRI message timestamps and the train tracking component that stores and updates train locations

from one GTFS-R message to the next, all components throughout the system are pure functions.

Beyond the well-known theoretical and engineering benefits of the functional paradigm, the functional

nature of the system components provides a huge benefit for testing and analysis: we can isolate the core

system components and, using archived input messages, replay the system with complete access to each

component’s Data Store. These archived messages can be filtered to include only the information for a

specific train or route.

This combination of cleanly organized data structures, thorough logging, and the ability to replay the

system starting from a point in time for a specific train creates a powerful analysis tool with which we

can identify, isolate, and inspect anomalous input as it moves through the system. Anomaly handling

code can then be implemented to make the system more robust. The ability to isolate the system core and

run archived messages through it also enables us to generate reports on the aggregate level. Weeks of data

can be run through the system in hours, all while having access to the internal data structures and logging

capabilities of the system.

17

4.4 Performance

After completion of the GTFS-R to SIRI conversion tool, AVAIL tested the server over the course

of two months. The tool converts the GTFS-R data directly to SIRI with 100 percent fidelity. The

SIRI translation feed contains an associated field that holds all data from the MTA GTFS-R.

As stated above, in the Methods section, the translation tool also offers information beyond what is

contained in the GTFS-R feed. The most important of these is the addition of longitude and latitude

during the conversion process. SIRI developers typically expect longitude and latitude in their data

feed, but GTFS-R keeps these fields optional and MTA does not include longitude and latitude.

AVAIL’s conversion algorithm omits the latitude and longitude fields for unscheduled trips and

unmapped scheduled trips because the locations of the vehicles cannot be inferred with an acceptable

level of confidence.

To test the accuracy of the conversion tool in developing longitude and latitude of trains in the subway

system, AVAIL integrated a data analysis feature that logs information on trips in each GTFS-R to SIRI

message. This logging feature can be used by MTA to assess the quality of their GTFS-R data.

AVAIL also found minor MTA Subway GTFS data anomalies identified by our stops-to-paths fitting

algorithm. These anomalies were quickly corrected by the MTA when brought to their attention.

Running the algorithm on the data of other agencies led to the discovery of some interesting schedules,

such as a bus line in upstate N.Y. that apparently serves Antarctica. These types of GTFS, GTFS-R,

and SIRI data logging tools could be used by transit agencies to increase the accuracy of their real-time

transit information.

Load testing of the server showed we are able to provide up to 1,000 simultaneous connections with

response time less than one second. This scalability means that deploying this conversion service

should be inexpensive for agencies looking to use it.

The combination of complete indexing and caching gives the server high throughput with low latency.

With these optimizations, serving responses becomes simply a matter of ow level memory copying

and piping swaths of contiguous memory into the kernel’s networking stack.

18

Figure 4 shows the server’s performance when all requests are for the largest possible response, which

contains all information available about trains in the Subway System. These tests were run on an old

desktop with 2G of memory and an Intel Core2 Duo CPU at 3.00GHz using Siege, an http load testing

and benchmarking utility.

You can see that it handles over 550 transactions per second, with a throughput of over 371MB per

second and an average latency of 0.40 seconds. Figure 5 shows the server’s performance for all types of

requests, large and small. In this test, there are 3,956 unique requests being sent to the server. You can see

that the server is able to handle over 1,400 requests per second with response sizes averaging around 11K.

During this test the average latency was 0.01 seconds.

Figure 4. Output Data 1

Figure 5. Output Data 2

19

A simple visualization of live trains was implemented to track and visualize real-time trains available

at: http://map.mta.availabs.org/. This visualization shows all of the data collected from the MTA and Long

Island Railroad real-time feeds using the GTFS-R to SIRI Conversion API. It updates with new data

every 30 seconds, currently you need to refresh to get new data. To see a route, enter a number such

as three, six, or nine into the middle filter and click “filter.”

Figure 6. Map Visualization of Real-time Subway Train Positions

4.5 Future Research

The GTFS-R feed currently contains three types of trips: scheduled with route shape, scheduled without

route shape, and unscheduled. For the latter two, it is not possible to impute accurately the longitude and

latitude of the train in real-time. Longitude and latitude are necessary data fields for SIRI, but are optional

fields in the GTFS-R feed. Longitude and latitude are currently not included in MTA’s GTFS-R feed.

Further research is needed to correct all data quality issues in the GTFS-R feed, specifically for scheduled

trips containing no route shape and unscheduled trips. Currently, 19 percent of all trips are unmapped

in the SIRI conversion because of missing GTFS shape information. This is an easily correctable data

quality issue. Twenty-five percent of all trips are unmapped because they are unscheduled. This problem

is more difficult due to the real-time nature of these trips but it could be solved by developing a method

for including route information for unscheduled trips. The logging feature of the API makes it possible

http://map.mta.availabs.org/

20

to locate and quantify these types of trips in MTA’s GTFS-R feed. With this logged information, it

is possible to improve the quality of the data in the GTFS-R feed and thereby improve the performance

of the real-time SIRI feed. Alternatively, future research could focus on ways of imputing longitude

and latitude from MTA’s GTFS-R feed as it is currently compiled.

Future opportunities include the universal deployment of the conversion tool. More research is required

to formally develop a truly expandable conversion API for universal deployment. Research could also

be conducted into the usefulness of this conversion API to understand transit system reliability and

performance under duress (e.g., blizzards and hurricanes).

21

5 Statement on Implementation
As previously noted, a real-time transit data API is useful to a transit agency both for internal tracking

and for third party software applications that use the feed to display real-time transit information. MTA

was using two different data formats to track and communicate real-time bus and subway information.

Real-time bus information was communicated in the SIRI format, while real-time subway information

was communicated using GTFS-R. MTA had found their SIRI API to be more popular with their

developer community. The conversion of GTFS-R to SIRI is meant as a way of better implementing

the real-time subway data into software applications by using the more popular format for both buses

and subway trains. Therefore, the implementation of a real-time data conversion API is designed to be

as close as possible to the current implementation method for SIRI real-time bus information from MTA.

MTA will publicize the conversion API during its annual hackathon as well as through the press.

5.1 Technical Aspects of Implementation

The code for this project is open source making the translation tool extendable by any agency using

GTFS-R. Additionally the open source code has been abstracted (generalized) as much as possible to

minimize the effort to implement at transit agencies other than MTA. The source code for the project

can be found at: https://github.com/availabs/MTA_Subway_SIRI_Server.

5.1.1 Admin Configuration Console

The admin configuration console for the service can be accessed at: http://siri.mta.availabs.org/console/

The configuration console allows a user to set the GTFS for the conversion API by pointing the server

to a URL where the data is hosted.

Figure 7. GTFS-R to SIRI Conversion API Control Console. Uploading Static GTFS Data by URL

Additionally, the configuration console allows the user to easily point the conversion API toward a

GTFS-R Feed by way of a URL and an API Key.

https://github.com/availabs/MTA_Subway_SIRI_Server
http://siri.mta.availabs.org/console/

22

Figure 8. GTFS-R to SIRI Conversion API Control Console. API Key and Retry Settings

Lastly, a user can set logging flags for the converter through the configuration console.

Figure 9. GTFS-R to SIRI Conversion API Control Console. Logging Settings

5.2 API Calls

This section is a technical implementation description for software developers intending to utilize

the API.

5.2.1 Monitoring Calls

The technical language in this section is exactly the same language used on MTA’s website to

aid software developers in implementing the SIRI real-time bus API.

23

5.2.1.1 SIRI Stop Monitoring Call

The SIRI StopMonitoring ("SIRI SM") call allows the developer to request information about

the vehicles serving a particular stop. As much as possible, the values used both in the SM request

and the SM response correspond to the values in the GTFS data for the B63.

5.3 SIRI StopMonitoring Requests

• The conversion API server parameters map one to one with the MTA’s SIRI bus server
parameters therefore the documentation for the bus API is valid documentation for the
subway SIRI conversion API. The following parameter descriptions were taken from the
MTA’s SIRI bus server documentation:

• key - TBD
• version - which version of the SIRI API to use (1 or 2). Defaults to 1, but 2 is preferable.
• OperatorRef - the GTFS agency ID to be monitored (optional). Currently, all stops have

operator/agency ID of MTA. If left out, the system will make a best guess. Usage of the
OperatorRef is suggested, as calls will return faster when populated.

• MonitoringRef - the GTFS stop ID of the stop to be monitored (required). For
example, 308214 for the stop at 5th Avenue and Union St towards Bay Ridge.

• LineRef - a filter by 'fully qualified' route name, GTFS agency ID + route ID (e.g.
MTA NYCT_B63).

• DirectionRef - a filter by GTFS direction ID (optional). Either 0 or 1.
• StopMonitoringDetailLevel - Level of detail present in response. In order of verbosity:
• basic - only available in version 2.

normal - default.
calls Determines whether or not the response will include the stops ("calls" in SIRI-speak)
each vehicle is going to make after it serves the selected stop (optional).

• MaximumNumberOfCallsOnwards - Limits the number of OnwardCall elements returned
in the query.

• MaximumStopVisits - an upper bound on the number of buses to return in the results.
• MinimumStopVisitsPerLine - a lower bound on the number of buses to return in the results

per line/route (assuming that many are available)

An example URL, incorporating some of these GET parameters, is http://bustime.mta.info/api/siri/stop-

monitoring.xml?key=##KEY##&OperatorRef=MTA&MonitoringRef=308209&LineRef=MTA NYCT_B63

http://bustime.mta.info/api/siri/stop-monitoring.xml?key=##KEY##&OperatorRef=MTA&MonitoringRef=308209&LineRef=MTA%20NYCT_B63
http://bustime.mta.info/api/siri/stop-monitoring.xml?key=##KEY##&OperatorRef=MTA&MonitoringRef=308209&LineRef=MTA%20NYCT_B63

24

5.3.1 SIRI StopMonitoring Responses

The XML below illustrates the SIRI StopMonitoring response. The comments in the XML below

document the meaning of each of the XML elements that are unique to the SIRI StopMonitoring

call. Much of the interesting data is contained inside the MonitoredVehicleJourney element, which

has its own documentation.

Note that the MonitoredVehicleJourney of a SIRI SM call will always have

a MonitoredCall element. The first OnwardCall element (if requested) will always be

the next stop the bus will make, which in most cases is a stop before the MonitoredCall.

Other notes about the particularities of StopMonitoring data is shown after the example response.

<!-- SIRI container elements -->

<Siri version="1.3" xmlns="http://www.siri.org.uk/siri">

 <ServiceDelivery>

 <!-- The timestamp on the MTA Bus Time server at the time the request was

fulfilled -->

 <ResponseTimestamp>2011-01-28T14:49:58-05:00</ResponseTimestamp>

 <!-- SIRI container for VehicleMonitoring response data -->

 <StopMonitoringDelivery version="1.3">

 <!-- Same as above. Required by the SIRI spec. -->

 <ResponseTimestamp>2011-01-28T14:49:58-05:00</ResponseTimestamp>

 <!-- The time until which the response data is valid until. -->

 <ValidUntil>2011-01-28T14:50:58-05:00</ValidUntil>

 <!-- SIRI container for data about a particular vehicle service the

selected stop -->

 <MonitoredStopVisit>

 <!-- The timestamp of the last real-time update from the particular

vehicle -->

 <RecordedAtTime>2011-01-28T14:49:27-05:00</RecordedAtTime>

 <!-- A complete MonitoredVehicleJourney element. See the

MonitoredVehicleJourney page for more information-->

 <MonitoredVehicleJourney>...</MonitoredVehicleJourney>

 </MonitoredStopVisit>

 ... More MonitoredStopVisit elements

 </StopMonitoringDelivery>

 </ServiceDelivery>

</Siri>

http://bustime.mta.info/wiki/Developers/SIRIMonitoredVehicleJourney
http://www.siri.org.uk/siri
http://bustime.mta.info/wiki/Developers/SIRIMonitoredVehicleJourney

25

5.3.2 The SIRI Vehicle Monitoring call

The SIRI Vehicle Monitoring (“SIRI VM”) call allows the developer to request information about one,

some, or all vehicles monitored by the MTA Bus Time system. As much as possible, the values used

both in the VM request and the VM response correspond to the values in the GTFS data.

5.4 SIRI VehicleMonitoring Requests

The SIRI VehicleMonitoring API is available at: http://siri.mta.availabs.org/api/siri/vehicle-monitoring.json

Please note that the calls made without either a VehicleRef or LineRef produces quite a load on

the system, so use them sparingly. Any developers found to be making repeated calls (e.g., at less than

30 second intervals) for all vehicles in the system may find their key revoked.

With the following GET parameters:

• key - TBD
• version - which version of the SIRI API to use (1 or 2). Defaults to 1, but 2 is preferable.
• OperatorRef - the GTFS agency ID to be monitored (optional). Currently MTA.
• VehicleRef - the ID of the vehicle to be monitored (optional). This is the 4-digit number

painted on the side of the bus, for example 7560. Response will include all buses if not
included.

• LineRef - a filter by 'fully qualified' route name, GTFS agency ID + route ID (optional).
• DirectionRef - a filter by GTFS direction ID (optional). Either 0 or 1.
• VehicleMonitoringDetailLevel - Level of detail present in response. In order of verbosity:
• basic - only available in version 2.

normal - default.
calls Determines whether or not the response will include the stops ("calls" in SIRI-speak)
each vehicle is going to make after it serves the selected stop (optional).

• MaximumNumberOfCallsOnwards Limit on the number of OnwardCall elements for
each vehicle when VehicleMonitoringDetailLevel=calls

• MaximumStopVisits - an upper bound on the number of buses to return in the results.
• MinimumStopVisitsPerLine - a lower bound on the number of buses to return in the results

per line/route (assuming that many are available)

http://siri.mta.availabs.org/api/siri/vehicle-monitoring.json

26

5.4.1 SIRI VehicleMonitoring Responses

The XML below illustrates the SIRI VehicleMonitoring response. The comments in the XML below

document the meaning of each of the XML elements that are unique to the SIRI VehicleMonitoring

call. Much of the interesting data is contained inside the MonitoredVehicleJourney element, which

has its own documentation.

<!-- SIRI container elements -->
<Siri version="1.3" xmlns="http://www.siri.org.uk/siri">
 <ServiceDelivery>
 <!-- The timestamp on the MTA Bus Time server at the time the request was
fulfilled -->
 <ResponseTimestamp>2011-01-28T14:22:48-05:00</ResponseTimestamp>
 <!-- SIRI container for VehicleMonitoring response data -->
 <VehicleMonitoringDelivery version="1.3">
 <!-- Same as above. Required by the SIRI spec. -->
 <ResponseTimestamp>2011-01-28T14:22:48-05:00</ResponseTimestamp>
 <!-- The time until which the response data is valid until. -->
 <ValidUntil>2011-01-28T14:23:48-05:00</ValidUntil>
 <!-- SIRI container for data about a particular vehicle -->
 <VehicleActivity>
 <!-- The timestamp of the last real-time update from the particular
vehicle -->
 <RecordedAtTime>2011-01-28T14:22:30-05:00</RecordedAtTime>
 <!-- A MonitoredVehicleJourney element for a vehicle in revenue
service. Please See the MonitoredVehicleJourney page for a thorough
discription -->
 <MonitoredVehicleJourney>
 ...
 </MonitoredVehicleJourney>
 </VehicleActivity>
 <!-- The next vehicle. -->
 <VehicleActivity>
 <RecordedAtTime>2011-01-28T14:22:43-05:00</RecordedAtTime>
 <!-- A complete MonitoredVehicleJourney element. See the
MonitoredVehicleJourney page for more information-->
 <MonitoredVehicleJourney>...</MonitoredVehicleJourney>
 </VehicleActivity>
 ... More VehicleActivity elements
 </VehicleMonitoringDelivery>
 </ServiceDelivery>
</Siri>

http://bustime.mta.info/wiki/Developers/SIRIMonitoredVehicleJourney
http://www.siri.org.uk/siri
http://bustime.mta.info/wiki/Developers/SIRIMonitoredVehicleJourney
http://bustime.mta.info/wiki/Developers/SIRIMonitoredVehicleJourney

27

5.5 Links to the GTFS-R to SIRI API

The server that is running a real-time SIRI feed for the MTA subway system is available here

at http://siri.mta.availabs.org/. The full data is available at the following URLs:

• http://siri.mta.availabs.org/api/siri/vehicle-monitoring.json
• http://siri.mta.availabs.org/api/siri/vehicle-monitoring.xml
• http://siri.mta.lirr.availabs.org/api/siri/vehicle-monitoring.json
• http://siri.mta.lirr.availabs.org/api/siri/vehicle-monitoring.xml
• http://siri.mta.lline.availabs.org/api/siri/vehicle-monitoring.json
• http://siri.mta.lline.availabs.org/api/siri/vehicle-monitoring.xml
• http://siri.mta.statenisland.availabs.org/api/siri/vehicle-monitoring.json
• http://siri.mta.statenisland.availabs.org/api/siri/vehicle-monitoring.xml

5.6 Marketing Strategies Recommended

As part of testing the conversion API, MTA Developers from the Google Developers User Group were

invited to test the tool in their existing applications. The MTA Facebook Developers User Group consists

of software developers who are already using the GTFS-R or SIRI APIs in their transit applications.

These software developers are the intended audience and will be marketing the Conversion API as a result

of marketing their real-time transit applications.

http://siri.mta.availabs.org/
http://siri.mta.availabs.org/api/siri/vehicle-monitoring.json
http://siri.mta.availabs.org/api/siri/vehicle-monitoring.xml
http://siri.mta.lirr.availabs.org/api/siri/vehicle-monitoring.json
http://siri.mta.lline.availabs.org/api/siri/vehicle-monitoring.json
http://siri.mta.statenisland.availabs.org/api/siri/vehicle-monitoring.json

28

6 Conclusion
In order to offer their developers a harmonized real-time transit information system, MTA needed to be

able to convert GTFS-R for the subway system to SIRI, the real-time format used for their bus system.

The solution included: mapping GTFS-R fields to SIRI fields using GTFS as a “spatial backbone”; the

analysis and algorithmic correction of anomalous data and unscheduled trips; the development of a

configurable server for implementation; and published as abstracted open source code for generalizable

deployment.

More research is required to formally develop a truly expandable conversion API for universal

deployment. One area of research in this regard is to determine best practices for mapping the longitude

and latitude of all trips - scheduled and unscheduled - in the SIRI feed. This research requires mapping

unscheduled trip IDs to corresponding GTFS data.

Additionally, research should be conducted into the usefulness of this conversion API to understand

transit system reliability and performance under duress (e.g., blizzards and hurricanes).

When developers utilize the GTFS-R to SIRI Conversion API in the development of transit apps, transit

riders will have the benefit of seamless multi-modal trip planning in real-time. In addition, there will be

new opportunities for agencies to monitor, analyze, and visualize system-wide operations performance.

This should yield cost savings, efficiencies, and service improvements.

29

7 Bibliography
Benn, H. P. TCRP Synthesis 10 Bus Route Evaluation Standards. Transportation Research Board,

National Research Council, Washington, D. C. 1995.

Furth, P. G. TCRP Synthesis 34 Data Analysis for Bus Planning and Monitoring. Transportation Research
Board, National Research Council, Washington, D. C. 1998.

No Author. (2015). What is GTFS-realtime?. Retrieved from https://developers.google.com/transit/gtfs-
realtime/?hl=en

No Author. (2011). SIRI Home Page. Retrieved from http://user47094.vs.easily.co.uk/siri/overview.htm

No Author. (2015). What is GTFS?. Retrieved from https://developers.google.com/transit/gtfs/?hl=en

No Author. (2015). General Transit Feed Specification Reference. Retrieved from
https://developers.google.com/transit/gtfs/reference

Okunieff, P.E., TCRP Synthesis 24 AVL Systems for Bus Transit, Transportation Research Board,
National Research Council, Washington, D. C. 1997.

Schweiger, C. L. TCRP Synthesis 48 Real-Time Bus Arrival Information Systems. Transportation
Research Board, National Research Council, Washington, D. C. 2015.

https://developers.google.com/transit/gtfs/?hl=en

A-1

Appendix A

A.1 GTFS-R Feed

"entity": [

 {

 "id": "000001",

 "is_deleted": false,

 "trip_update": {

 "trip": {

 "trip_id": "034950_5..N60R",

 "route_id": "5",

 "start_time": null,

 "start_date": "20160308",

 "schedule_relationship": null,

 ".nyct_trip_descriptor": {

 "train_id": "05 0549+ NLT/DYR",

 "is_assigned": false,

 "direction": 1

 }

 },

 "vehicle": null,

 "stop_time_update": [

 {

 "stop_sequence": null,

 "stop_id": "257N",

 "arrival": null,

A-2

 "departure": {

 "delay": null,

 "time": {

 "low": 1457434170,

 "high": 0,

 "unsigned": false

 },

 "uncertainty": null

 },

 "schedule_relationship": 0,

 ".nyct_stop_time_update": {

 "scheduled_track": "4",

 "actual_track": null

 },

 "_departure": {

 "time": 1457434170

 }

 },

 {

 "stop_sequence": null,

 "stop_id": "501N",

 "arrival": {

 "delay": null,

 "time": {

 "low": 1457439090,

 "high": 0,

A-3

 "unsigned": false

 },

 "uncertainty": null

 },

 "departure": null,

 "schedule_relationship": 0,

 ".nyct_stop_time_update": {

 "scheduled_track": "2",

 "actual_track": null

 },

 "_arrival": {

 "time": 1457439090

 }

 }

],

 "timestamp": null

 },

 "vehicle": null,

 "alert": null

}

"cause": 1,

 "effect": 8,

 "url": null,

 "header_text": {

 "translation": [

 {

A-4

 "text": "Train delayed",

 "language": null

 }

]

 },

 "description_text": null

 }

A.2 SIRI Feed

"Siri": {

 "ServiceDelivery": {

 "ResponseTimestamp": "2016-03-21T23:11:18-04:00",

 "VehicleMonitoringDelivery": [

 {

 "ResponseTimestamp": "2016-03-21T23:11:18-04:00",

 "ValidUntil": "2016-03-08T05:16:38-05:00",

 "VehicleActivity": [

 {

 "MonitoredVehicleJourney": {

 "LineRef": "MTA NYCT_1",

 "DirectionRef": null,

 "FramedVehicleJourneyRef": {

 "DataFrameRef": "2016-03-08",

 "DatedVehicleJourneyRef": "MTA
NYCT_A20151206WKD_026550_1..S02R"

 },

 "JourneyPatternRef": "MTA NYCT_1..S02R",

 "PublishedLineName": "1",

A-5

 "OperatorRef": "MTA NYCT",

 "OriginRef": null,

 "DestinationRef": "MTA_140S",

 "DestinationName": "SOUTH FERRY LOOP",

 "OriginAimedDepartureTime": "2016-03-08T04:25:30-05:00",

 "SituationRef": null,

 "Monitored": true,

 "VehicleLocation": {

 "Latitude": null,

 "Longitude": null

 },

 "Bearing": null,

 "ProgressRate": null,

 "ProgressStatus": null,

 "VehicleRef": "MTA NYCT_01 0425+ 242/SFY",

 "MonitoredCall": {

 "Extensions": {

 "Distances": {

 "PresentableDistance": null,

 "DistanceFromCall": null,

 "StopsFromCall": 0,

 "CallDistanceAlongRoute": null

 }

 },

 "ExpectedArrivalTime": "2016-03-08T05:16:38-05:00",

 "ExpectedDepartureTime": "2016-03-08T05:18:38-05:00",

A-6

 "StopPointRef": "MTA_137S",

 "StopPointName": "Chambers St",

 "VisitNumber": 1

 },

 "OnwardCalls": {

 "OnwardCall": [

 {

 "Extensions": {

 "Distances": {

 "PresentableDistance": null,

 "DistanceFromCall": null,

 "StopsFromCall": 0,

 "CallDistanceAlongRoute": null

 }

 },

 "ExpectedArrivalTime": "2016-03-08T05:16:38-05:00",

 "ExpectedDepartureTime": "2016-03-08T05:18:38-05:00",

 "StopPointRef": "MTA_137S",

 "StopPointName": "Chambers St",

 "VisitNumber": 1

 },

 {

 "Extensions": {

 "Distances": {

 "PresentableDistance": null,

 "DistanceFromCall": null,

A-7

 "StopsFromCall": 1,

 "CallDistanceAlongRoute": null

 }

 },

 "ExpectedArrivalTime": "2016-03-08T05:20:08-05:00",

 "ExpectedDepartureTime": "2016-03-08T05:20:08-05:00",

 "StopPointRef": "MTA_138S",

 "StopPointName": "Cortlandt St",

 "VisitNumber": 1

 },

 {

 "Extensions": {

 "Distances": {

 "PresentableDistance": null,

 "DistanceFromCall": null,

 "StopsFromCall": 2,

 "CallDistanceAlongRoute": null

 }

 },

 "ExpectedArrivalTime": "2016-03-08T05:21:38-05:00",

 "ExpectedDepartureTime": "2016-03-08T05:22:38-05:00",

 "StopPointRef": "MTA_139S",

 "StopPointName": "Rector St",

 "VisitNumber": 1

 },

 {

A-8

 "Extensions": {

 "Distances": {

 "PresentableDistance": null,

 "DistanceFromCall": null,

 "StopsFromCall": 3,

 "CallDistanceAlongRoute": null

 }

 },

 "ExpectedArrivalTime": "2016-03-08T05:25:08-05:00",

 "ExpectedDepartureTime": null,

 "StopPointRef": "MTA_140S",

 "StopPointName": "South Ferry Loop",

 "VisitNumber": 1

 },

],

 "SituationExchangeDelivery": [

 {

 "Situations": {

 "PtSituationElement": {

 "SituationNumber": null,

 "PublicationWindow": {

 "StartTime": null,

 "EndTime": null

 },

 "Severity": "undefined",

 "Summary": "GTFS-Realtime train delay alert.",

A-9

 "Description": "The following trains are delayed: 05 0512 180/FLA.The
following routes are affected: 5.",

 "Affects": {

 "VehicleJourneys": [

 [

 {

 "LineRef": "MTA 5",

 "DirectionRef": "1"

 }

]

]

 },

 "Consequences": {

 "Consequence": [

 {

 "Condition": "DELAYED"

 }

}

NYSERDA, a public benefit corporation, offers objective
information and analysis, innovative programs,
technical expertise, and support to help New Yorkers
increase energy efficiency, save money, use renewable
energy, and reduce reliance on fossil fuels. NYSERDA
professionals work to protect the environment
and create clean-energy jobs. NYSERDA has been
developing partnerships to advance innovative energy
solutions in New York State since 1975.

To learn more about NYSERDA’s programs and funding opportunities,

visit nyserda.ny.gov or follow us on Twitter, Facebook, YouTube, or

Instagram.

New York State
Department of Transportation

50 Wolf Road
Albany, NY 12232

telephone: 518-457-6195

dot.ny.gov

New York State
Energy Research and

Development Authority

17 Columbia Circle
Albany, NY 12203-6399

toll free: 866-NYSERDA
local: 518-862-1090
fax: 518-862-1091

info@nyserda.ny.gov
nyserda.ny.gov

State of New York

Andrew M. Cuomo, Governor

New York State Energy Research and Development Authority

Richard L. Kauffman, Chair | John B. Rhodes, President and CEO

New York State Department of Transportation
Joan McDonald, Commissioner

NYSERDA
Department of
Transportation

	1 Introduction
	1.1 Background
	1.1.1 Automatic Vehicle Location (AVL)
	1.1.2 Open Data
	1.1.3 API
	1.1.4 Open Source Code
	1.1.5 The General Transit Feed Specification (GTFS)
	1.1.6 GTFS-R
	1.1.7 SIRI

	2 Project Budget
	2.1 Analysis of actual cost incurred in relation to the budget
	2.1.1 Project Budget - NYSERDA
	2.1.2 MTA Match

	3 Research Method
	3.1 Data Analysis
	3.1.1 General Transit Feed Specification (GTFS)
	3.1.2 General Transit Feed Specification Real-Time (GTFS-R)
	3.1.3 Service Interface for Real-Time Information (SIRI)

	3.2 Methods
	3.3 Project Timeline

	4 Findings
	4.1 Caching
	4.2 Event-based Logging
	4.3 System Architecture
	4.4 Performance
	4.5 Future Research

	5 Statement on Implementation
	5.1 Technical Aspects of Implementation
	5.1.1 Admin Configuration Console

	5.2 API Calls
	5.2.1 Monitoring Calls
	5.2.1.1 SIRI Stop Monitoring Call

	5.3 SIRI StopMonitoring Requests
	5.3.1 SIRI StopMonitoring Responses
	5.3.2 The SIRI Vehicle Monitoring call

	5.4 SIRI VehicleMonitoring Requests
	5.4.1 SIRI VehicleMonitoring Responses

	5.5 Links to the GTFS-R to SIRI API
	5.6 Marketing Strategies Recommended

	6 Conclusion
	7 Bibliography

